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Abstract The geometric conservation law (GCL) is an itmportant concept for moving grid
techniques because it directly regulates the treatments of the fluid flow and grid movement. With
the grid movement at every time instant, the Jacobian, associated with the volume of each element
n curvilinear co-ordinates, needs to be updated in a conservative manner. In this study, alternative
GCL schemes for evaluating the Jacobian have been investigated in the context of a pressure-based
Navier-Stokes solver, utilizing moving grid and the first-order implicit time stepping procedure as
well as the PISO scheme. GCL-based on first and second-order, implicit as well as time-averaged,
time integration schemes were considered. Accuracy and conservative properties were tested on
steady-state, laminar flow inside a 2D channel and time dependent, turbulent flow around a 3D
elastic wing; both treated with moving grid techniques. It seems that the formal ovder of accuracy is
not a decisive indicator. Instead, the speed of grid movement and the interplay between the flow
solver and the GCL treatments make a more noticeable impact.

Nomenclature

a,b = parameters influencing grid Af = time step (t"1—¢7)
movement Ax = artificial grid movement

i = sth grid point of nodes

J = Jacobian of  the inverse  §&m,{ = curvilinear co-ordinate directions
transformation p = density of fluid

S = surface area of element

t = time

% = volume of element Subscripts and superscripts

v = velocity of fluid flow t = derivative with respect to time

A = local velocity of cell boundary & = derivative in this direction

x, v, z = Cartesian co-ordinate directions ] = derivative in this direction

i,9,2 = grid velocity in the respective ¢ = derivative in this direction
directions n = nth time step

1. Introduction

In many fluid flow and heat/mass transfer problems, situations arise when one or more
boundaries move with respect to time. There are alternative techniques to handle such
boundary movements, including Lagrangian, Eulerian and combined approaches
(Shyy et al., 1996, 2001). The Lagrangian approach often devise grid to move in time
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and to conform to the change in boundary geometry. In such problems, we need to take
care of certain geometric quantities involving the new mesh position and velocity. This
can be taken care of by the geometric conservation law (GCL) as coined by Thomas and
Lombard (1979). In the numerical perspective, a discrete version of GCL (DGCL) will be
implemented.

The DGCL states that the computation of the geometric quantities associated with a
moving grid should be computed in such a way that, independent of the mesh
movement, the numerical scheme used for integrating the flow equations must preserve
a uniform flow field (Guillard and Farhat, 2000). This is in conjunction with the fact that
preserving uniform field implies first-order accuracy. In addition, Guillard and Farhat
(2000) showed that for a p-order time-accurate scheme on a fixed mesh, satisfying the
corresponding p-order DGCL is a sufficient condition for the scheme to be at least
first-order time accurate on a moving mesh. They established the requirement that
preserving the uniform flow field on moving grids is related to a consistency condition. It
has also been proven that not satisfying the DGCL introduces a weak instability in the
numerical solution on moving grids (Lesoinne and Farhat, 1996).

Substantial evidence exists showing that not satisfying the GCL leads to erroneous
solutions or spurious oscillations in the solution (Farhat ef al, 2001, 2003; Guillard and
Farhat, 2000; Lesoinne and Farhat, 1996). For example, Shyy ef al (1996) demonstrated
that without explicitly enforcing GCL, O(1) error could be induced in the computation
simply due to the grid movement effect. It has also been shown that satisfying the DGCL
can improve the time-accuracy of computations on moving grids (Koobus and Farhat,
1999). One of the widely used methods for fluid-structure interaction problems is the
arbitrary Lagrangian-Eulerian (ALE) formulation. It formulates the Navier-Stokes
equations in three co-ordinate systems viz., material or Lagrangian (for structure
motion), spatial or Eulerian (for fluid motion) and referential (for grid movement). Farhat
et al. (2001, 2003) showed that for ALE schemes, satisfying the DGCL leads to a
necessary and sufficient condition for the numerical scheme to preserve non-linear
stability on a fixed grid. However, there have been a few cases where satisfying or not
satisfying the GCL produced the same results (Morton et al., 1998).

It should be noted that since GCL arises due to the numerical procedures devised
based on grid movement, its implications are expected to be scheme dependent.
Alternative forms of the GCL have been implemented over the years to study its impact
on solution accuracy. Thomas and Lombard (1979) implemented the GCL for
density-based finite difference schemes on structured meshes by updating the value of
the Jacobian at each time step. Shyy ef al. (1996, 2001) implemented the GCL along the
lines of Thomas and Lombard for pressure-based finite volume schemes by updating
the Jacobian values after every time step using a first-order backward Euler
time-integration scheme. Lesoinne and Farhat (1996) developed a first-order, time
accurate scheme preserving the GCL using the density-based ALE finite volume as
well as finite element schemes on unstructured grids. Koobus and Farhat (1999)
proposed a GCL scheme for second-order time-accurate density-based ALE finite
volume schemes. Farhat et al (2001) summarized six different time-integration
schemes based on ALE formulation, some of them preserving the DGCL and some of
them that do not, and showed the impact the different schemes have on solution
accuracy. In this effort, we assess selected approaches for multi-block structured grids
based on finite volume formulation and do a comparative study on these methods.



Most previously conducted studies employed the density-based fluid flow solver; in the
present effort, the pressure-based fluid flow solver (Shyy, 1994; Shyy et al, 1997;
Thakur and Wright, 2002) is utilized. The implications of different implementation of
GCL and the fluid flow solver are of main interest. Together with the previously cited
references, the present work offers a more complete assessment of the GCL.

In the following, we first derive, from first principles, the equations for GCL and
look at the numerical procedure for implementing it. Then, test problems will be
devised to evaluate the performance of these alternative approaches directly.

2. Theory and numerical procedure
The GCL is derived from the conservation of mass by setting p = 1 and v = 0. It can be

written as follows:
g/dV—/W~dS e}
e fy,—  Js °

In words, it can be understood as the change in volume of each control volume between
two time instants, #” and ¢ "1, must be equal to the volume swept by the cell boundary
during that time A¢ = ¢"1 — ¢7.

The above expression is referred to as the integral form of GCL. A differential
statement of the GCL can be derived from the integral statement of GCL. Specifically,
we first perform a transformation from the Cartesian co-ordinate system (x,v,2) to the
body-fitted co-ordinate system (¢, 7, {), which leads to the following form of the integral
statement:

d
= / Jdédnd¢ = / (V- we) dédnds @
14 v

Here, ] represents the volume element in the transformed co-ordinate system hence
each node is associated with a particular value of /. Therefore, the computed value of /
must be consistent with the value of AV implied by the numerical scheme used for
solving the flow equations. Earlier, arbitrary procedures were used to compute /, e.g.
instantaneous mesh distribution at a given time instant was used to evaluate J at that
particular time, which lead to an erroneous solution.

Expanding the right hand side of equation (2) and after performing necessary
manipulations, we arrive at the following form of the differential statement of GCL.

Ji+ &+ )y + (=0 3)

where, &, 1, {; are the metric terms given by
& = —[¥(n2y — Yezn) + 9@nx; = 2g87) + 2y — X Vn)]
= —[X(VzZe — Vezy) + W @xe — z2exp) + 2(X Ve — XeYe)] 4)

= —[A(Yezy — Yn2g) +9@eky — 2ZpXe) + 2Ky — Xy )e)]

Here, &, 7, z are the grid velocities in the x-, y- and z-directions, respectively. Equation (3)
is solved numerically to update the Jacobian values at each time step. The numerical
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solution for equation (3) requires only an initial condition, which is obtained from the
initial fixed grid and is given by

J = X+ XY + Xy Ze — XYz — XnZe — Xn)i2y ®)

We will now look at how to calculate the Jacobian values in a consistent fashion. In this
regard, we will implement four different time-integration schemes for evaluating the
Jacobian values, they being, a first-order implicit scheme, first-order time-averaged
scheme, second-order implicit scheme and a second-order time-averaged scheme. The
formulation for the different GCL schemes is as follows.

2.1 First-order implicit scheme

This scheme was initially suggested by Thomas and Lombard (1979) for density-based
finite difference schemes and later was implemented using a pressure-based finite
volume method by Shyy et al. (1996, 2001). The difference equation for the fully implicit
scheme is given by

=T =A@ + T+ @ ©)

where the metric coefficients are calculated from equation (4) at the (z+1)th time step
and the grid velocities are calculated as follows

n+l _ ,n n+l _ ,n n+l _ n
- n+1 X X o n+1 y y sn+l Z z

P = Y = I

At At @

2.2 First-order time-averaged scheme

It was suggested (Farhat ef al, 2001) that a time-averaged evaluation of the metric
terms leads to a more consistent evaluation of the Jacobian especially when the time
step is large. Hence, we reformulate the governing equation (3) by time-averaging the
evaluation of metrics over more than one mesh configuration as opposed to evaluation
of metrics on a single mesh configuration (equation (6)). It can be written as follows:

n+l _ n 1 ntk ntl
(e v o v @) =o ®

Here

apl 1
@ =5 @ + @

arl 1
(™ =5 [ + ©

n+% _

1
@ =5 @ + @y
As can be seen from the above expression that the metrics are evaluated at a mesh
configuration, which is in between the mesh configurations at " and ¢”*!. The grid
velocities for the metric term is evaluated as follows:



n+l _ ,n n+l _ n+l _
X X yn+% — Y y Zn-&—% — Z 2"

At At At

.n+%:

X 10)

2.3 Second-order implicit scheme

The difference equation for a second-order implicit scheme (three-point backward), as
suggested by Koobus and Farhat (1999) is used here. For structured meshes, it can be
written as

%]ﬂ“rl _ 2]11 +%]n 1
At

Here, the metrics are evaluated in a similar fashion to the one used for first-order
implicit scheme at the (z + 1)th grid configuration. The grid velocity is also calculated
in a similar fashion as given by equation (7).

+ @ + ! + @] =0 an

2.4 Second-order time-averaged evaluation of Jacobian

Here we use a time-averaged procedure to evaluate the fluxes. Koobus and Farhat
(1999) employed such a procedure for unstructured meshes and we extend such a
scheme to a structured mesh here. The scheme can be written as follows:

3rnt+l _ 2" 4 n—1 " n
S e ey o
(12
1 n—1 n—1 n—1
+5 @+ y @y =0
where
ST N a]. nt_ 1 n—
@7 =g @ @ @i =g @+ @
n+ 1 1 n ”*% 1 n n—
) =gt e i =g [t a3
n 1 n— 1 —
@it =3 [t @) @i =5 @@

Here, the averaging is done in between configurations [¢”, t"*1]and [¢”, "~ '] and the
mesh velocities for each of these metric terms are evaluated as follows:

n+1l _ ,n n+l _ n+l _ n
; 11+% — X X n+% y Y e z 2
* A Y T A T TN y
(14)
n _ n—1 n _ gyn—1 n _ on—1
b= A T Y Ty = S
At At At

As can be seen from the above equations that three different mesh configurations were
used to arrive at this scheme. Having formulated the various schemes to implement GCL
(calculation of Jacobians in our case), we now demonstrate the schemes by employing
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Figure 1.

(@) Original grid for the
channel, (b)-(d) Grid
distribution at different
time instants

two different mesh configurations: a 2D channel flow bounded by fixed, rigid solid
boundaries, and flow over a 3D elastic wing. For all cases, the flow solver is based on the
second-order spatial treatments of all terms, second-order upwind for convection, and
central differences for pressure and viscous terms. Two different time marching
schemes will be used to test the GCL for the 2D channel flow case, they being, the fully
implicit scheme and the pressure implicit splitting of operators (PISO) scheme (Shyy,
1994; Thakur and Wright, 2002). The first-order fully implicit scheme for flow solver
along with different approaches for GCL formulation will be used for testing the 3D case.

The channel flow is a fixed-geometry, steady-state problem. It was solved using
artificially generated moving grid in a time dependent manner, with the aim of
examining the error induced by the moving grid along with GCL implementations. The
aeroelastic wing problem does involve a coupled fluid and structure interaction,
resulting in time dependency in both wing shape and fluid flow. More details will be
offered when describing the individual problem.

3. Numerical results

3.1 Two-dimensional channel flow: first-order backward Euler flow solver

We first demonstrate the above-mentioned methods for a 2D channel flow with fixed
dimensions of 15X 1. We do an incompressible, laminar flow calculation with a
Reynolds number of 100 based on inlet length. The original grid for the channel is a
uniform grid with 151 points in the x-direction and 11 points in the y-direction as
shown in Figure 1(a). We perform unsteady flow calculations by moving the grid

10 15

10 15

@



towards the center with varying stiffness after each time step. We ensure convergence
of fully developed solution at every time step. In other words, steady-state is reached at
every time step in spite of the artificial grid movement. The grid is moved in the
following manner.

Ax() = a(t) + (G — Db(t)

where Ax(7) represents the grid movement for the ith node; a(f) and b(f) are time varying
quantities representing the spacing between the first two nodes and the spacing
between the last two nodes for the first half of the grid. Similar procedure is followed
for the second half of the grid. Such a gird movement produces different grid
velocities at each time step. The grid snapshot at different time steps is shown in
Figure 1(b)-(d).

The velocity profile at different time instants for each of the schemes is shown in
Figure 2. The steady-state velocity profile is shown as a solid line and as can be seen
from the figure, deviation from steady-state solution is observed for higher order
schemes as well as the first-order time-averaged scheme. The first-order fully implicit

First order Time-averaged

First order Implicit

- Analytical
Analytical i
1 Time step 1 1 N 1:22 :::s ;
a Time step 2 ° Time step 3
0.9 ° Time step 3 0.9 P

0.8 0.8

0.7 0.7

u-velocity u-velocity

Second order Time-averaged

Second order Implciit

Analytical Analytical
1 a Time step 1 1 a Time step 1
a Time step 2 a Time step 2
0.9 Time step 3 0.9 Time step 3

0.8 0.8

0.7 0.7

0.6 06

u-velocity u-velocity
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Figure 2.
Velocity profile for

channel flow with Re = 10

at different time instants
for coarse grid (151 X 11)
using backward Euler
method
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Figure 3.

Error norm vs grid
velocity using various
schemes for channel flow
for 151 X 11 grid using
Backward Euler method

scheme was found to produce the most accurate solution among all GCL schemes
considered. We also computed the error norm by assuming the steady-state solution for
channel flow as the exact solution and plot the error norm versus grid velocity for each
of the four schemes. This is shown in Figure 3. As can be seen from the plot, the error
norm is within comparable ranges for all cases except for the second-order
time-averaged scheme. This is consistent with the velocity profile plot shown in
Figure 2. It can clearly be seen that a first-order implicit scheme produces the least
error norm compared to all other schemes. A grid refinement study was done on the
same test case by doubling the number of grid points in both directions. A similar grid
movement pattern was used here. The plot of velocity profiles is shown in Figure 4.
The error norm versus grid velocity is shown in Figure 5 and as can be seen from the
figure, the pattern is very similar as compared to the coarse grid case, however, the
magnitude of error is less for fine grid case than coarse grid case as expected. Thus, we
can infer that there is not much of an advantage of using a higher order GCL scheme as
compared to a first-order implicit scheme. This observation can be understood with the
view that GCL could be related to Guillard and Farhat’s (2000) statement that for a
p-order time-accurate scheme on a fixed mesh, satisfying the p-order accurate DGCL is
a sufficient condition for the scheme to be first-order time accurate on a moving mesh.
The above statement coupled with the fact that our flow solver is first-order implicit in
time leads to the observation that the first order GCL scheme performs the best among
the schemes considered.

3.2 Two-dimensional channel flow: PISO algorithm

The main reason for testing GCL for the PISO algorithm is due to the non-iterative
nature of the PISO algorithm, which makes it much faster than the fully implicit Euler
method. However, there is a limitation in the choice of time step since the PISO
algorithm is a semi-implicit algorithm, hence confined to smaller CFL numbers. The
test case for the channel flow case using the PISO flow solver is identical to the Euler

—o— 1st Implicit
0.05 —&— 1st time averaged | |
—A—2nd Implicit
0.04 ——2nd time averaged
0.03 -
E
2 0.02 -
§ .
o B— =5— =
0.01 - ,g‘\_ﬁ_/a//_#‘2
0 4
-0.01 T T T T T T T
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Grid Velocity



First order Implicit First order Time-averaged
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1 o Time step 1 1 o Time step 1
a Time step 2 a Time step 2
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case except for the magnitude of grid movement since CFL number needs to be
preserved. The CFL number is defined as
UAt
CFL A
As can be seen from the above expression, both time step size and grid spacing have an
effect in deciding the CFL number. Too small a grid spacing will lead to undesirably
high CFL numbers, hence the reason for smaller magnitude grid movement for the
PISO algorithm test case. Other than the magnitude, the grid movement follows the
identical pattern as mentioned for the Euler case. Similar velocity profile plot at
different time instants for each of the GCL schemes is shown in Figure 6. The
first-order fully implicit scheme was found to produce the most accurate solution
among all GCL schemes considered even though it is not very clear from the plot.
Similar error norms were calculated using the benchmark steady-state solution as the
exact solution. The error norms for the four schemes are tabulated in Table I. From the
table, it can be seen that first-order implicit scheme for GCL produces the least error
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Figure 4.

Velocity profile for
channel flow at different
time instants for fine grid
(301 X 21) case using
backward Euler method
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Figure 5.

Error norm vs grid
velocity using various
schemes for channel flow
for 301 x 21 grid using
backward Euler method
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norm compared to other cases. This again shows that the first-order implicit scheme to
evaluate the Jacobians performs best in the context of flow solver under consideration.
We will now demonstrate a 3D example.

3.3 Three-dimensional elastic wing

As a next case study, we carry out a uniform flow test for a 3D case. We will consider
flow over a 3D AGARD 445.6 wing to illustrate the effect of the various schemes. The
AGARD 445.6 wing is a 3D elastic wing constructed with a NACA65A004 airfoil with
a root cord of 1.833ft, a semi-span of 2.5 ft and a taper ratio of 0.66. It is placed in the
middle of a CFD domain with fixed dimensions of 10 X 5 X 5. A schematic of the top
view of the domain, along with the boundary conditions, is shown in Figure 7.

Similar to the channel flow case, two different examples are presented. First, we
simply employed the wing geometry to define the mesh system. The fluid flow is
considered to be uniform and the solid boundary is ignored. In this example, again, we
were only interested in examining the impact of grid movement and the
implementation of GCL on the numerical outcome of a trivial analytical solution.
Second, we conducted a time dependent, turbulent flow computations around a solid,
elastic wing.

For the first case, the mesh on the surface of the wing was arbitrarily moved in a
direction normal to the surface with a linear variation in the spanwise direction with
the root being fixed. A plot of the spanwise deflections at different time instants is
shown in Figure 8. Uniform flow calculation was performed after moving the entire
grid after each time instant and error norm calculated based on the trivial solution for
pressure on the surface of the wing. All four schemes were tested and the
corresponding error norm tabulated in Table II. A plot of these error norms versus grid
velocity is shown in Figure 9. As can be seen from the figure, there is hardly any
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Evaluation of
geometric
conservation law

861

Figure 6.

Velocity profile for
channel flow at different
time instants for 151 X 11
grid using PISO method

Table L.

Error norm versus grid
velocity for the four GCL
schemes for 3D wing case
using backward Euler
method

difference between the four schemes implemented to preserve GCL. Although the plots
look indistinguishable, it can be seen from the table that there are minute differences
between each schemes, however, they are insignificant. This is in contrary to the
results obtained by Farhat et al (2001), where they showed that considerable
differences were obtained between various schemes employed to preserve GCL. This
could be due to the choice of first-order fully implicit fluid flow solver used to perform
these computations. Apparently, depending on the fluid flow solver, different outcome
can be realized in terms of the performance of the implementation of GCL.
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Figure 7.

Schematic of AGARD
wing in CFD domain along
with boundary conditions

Figure 8.

Plot depicting the
arbitrary movement of the
wing in the spanwise
direction

Table II.

Error norm versus grid
velocity for the four GCL
schemes for 3D wing case
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It has been shown by Farhat ef al. (2001, 2003) and Lesoinne and Farhat (1996) that the
choice of GCL scheme does affect the accuracy of coupled fluid-structure solutions.
Therefore, we have examined a 3D aeroelastic case with different GCL schemes. Time
dependent, turbulent aeroelastic calculation based on the aforementioned AGARD
wing geometry was adopted. The structure solver used here is a time-invariant model
based on beam finite elements (Kamakoti et al, 2002) with an explicit time integrator;
hence, the structure solver was iterated several times to synchronize with the fully
implicit flow solver. The grid movement is taken care of with the help of a combination
of perturbation method and transfinite interpolation method (Lian et al, 2003).
Calculations were performed for a turbulent Reynolds number of 107,000/ft, based on
root chord, with a 5° angle of attack. Details of the boundary and initial conditions,
geometric information and the structural and fluid flow solvers can be found in the
work of Kamakoti et al. (2002). The spanwise deflection at the first four time instants,
for the first-order fully implicit GCL scheme, is shown in Figure 10. Since the results
are very similar for the remaining schemes, they are not shown in the same plot,
instead, the tip deflection at two different time instants is tabulated in Table III. As can
be seen from the table, the values are virtually identical. This leads us to believe that
the choice of GCL scheme does not really affect the aeroelastic solution as well in our
case. Such an observation for the 3D wing case can be explained as follows. Comparing
Figure 3 and Table II in the context of grid velocity, we can see that the grid velocity
associated with the 3D wing movement is an order of magnitude less than that of the
channel flow case. It has been proved by previous authors (Farhat et al., 2001) that, for
smaller grid velocity, the impact of GCL is minimal on solution accuracy. Hence, it
seems clear that both the detailed schemes employed by the flow solver and the
magnitude of grid movement directly influence the performance of the GCL scheme for
moving boundary computations.
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Figure 9.

Various schemes for
AGARD wing using
backward Euler method
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Figure 10.

Spanwise deflection of
AGARD wing at four

different time instants

Table III.
Tip deflection at two

different time instants for

different GCL schemes
for 3D wing case

Wing deflection in spanwise direction at different time instants
0.14
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[a]
0.04
0.02
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0 12
Spanwise Indices
Scheme Time instant no. 2 Time instant no. 4
First implicit 7613%x 107 1.168x 107!
First semi-implicit 7616 x 102 1170 x 107!
Second implicit 7621 x 1072 1171 x 107}
Second semi-implicit 7620 % 1072 1.171x 1071

4. Summary and conclusions

Four different schemes for updating Jacobian values that preserve the GCL were
examined in an attempt to arrive at a robust choice for performing moving grid
computations along with a pressure-based finite volume fluid flow solver. Both first-
and second-order fully implicit as well as time-averaged evaluation of metrics were
considered with the aid of finite volume method for CFD computations. Three test
cases, two using the 2D channel flow one using the 3D elastic wing, with different
Reynolds number, time dependency, and geometry movement were carried out to
assess the performance of the different GCL schemes implemented. The first-order
fully implicit method was found to produce the least error norm for the uniform flow
test cases considered as well as the aeroelastic test case. The results have demonstrated
that the impact of GCL on the solution accuracy is not simply governed by the formal
order of accuracy of the discretization scheme. The results also show that the choice of
fluid flow solver and magnitude of grid movement strongly affect the GCL scheme for
performing aeroelastic computations. Since the first-order fully implicit GCL scheme
simplifies the data structure in the code development effort, we conclude that this
scheme is appropriate in the context of the fluid flow solver employed.
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